Exploring the Skin–Brain Connection in ALS
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that leads to the death of motor neurons in the brain and spinal cord. This neuronal loss results in severe muscle weakness and eventual paralysis. The disease typically advances quickly, and most patients succumb to respiratory failure within three to five years of onset.
There are two forms of ALS: sporadic (sALS), which accounts for about 90% of cases, and familial (fALS), which represents the remaining 10%. Despite ongoing research, ALS remains difficult to diagnose in its early stages. Clinical evaluations and electromyography are currently the primary tools for diagnosis, but they often lead to delays of up to 16 months. Blood markers lack specificity, cerebrospinal fluid sampling carries risks, and neuroimaging is not always conclusive.
This diagnostic delay limits the effectiveness of available treatments such as riluzole, AMX0035, and tofersen, which may slow disease progression but do not halt it. Therefore, the need for early, accurate, and non-invasive biomarkers is urgent.
Interestingly, researchers are now turning to the skin—a tissue that shares a common embryonic origin with the nervous system—as a potential source of diagnostic clues.
Why Skin? Shared Origins with the Nervous System
The skin and the central nervous system (CNS) both develop from the neuroectoderm during embryogenesis. This shared origin suggests that molecular and cellular processes in the skin could mirror changes in the nervous system. For example, keratinocytes in the skin express NMDA receptors involved in memory and learning, and they also participate in immune regulation through the hypothalamic-pituitary-adrenal axis.
This close relationship between the skin and the nervous system is already being studied in other neurodegenerative diseases. For instance, deposits of alpha-synuclein in the skin have been used to detect Parkinson’s disease before neurological symptoms emerge.
Could similar skin changes be used to diagnose ALS earlier?
Structural Changes in ALS Skin
The study reviewed a range of skin abnormalities in ALS patients, starting with its structure. In ALS-affected skin, researchers found:
-
Reduced and disorganized collagen bundles
-
Deposition of amorphous material in the dermis
-
Fragmentation and separation of collagen fibers
-
Thickened blood vessel walls
These features make the skin feel soft and leathery and are sometimes associated with a “delayed return phenomenon” when pressed. Even in presymptomatic patients with genetic mutations linked to ALS (e.g., C9orf72), tissue-engineered skin models showed early signs of abnormalities like epidermal undifferentiation and collagen disorganization.
Nerve Fiber Loss and Autonomic Dysfunction
Beyond structure, ALS skin shows reduced nerve fiber density. This reflects a broader pattern of sensory and autonomic nervous system involvement in ALS.
Patients often experience:
-
Impaired sweating due to reduced sweat gland nerve fiber density
-
Changes in thermal sensation
-
Decreased pilomotor nerve fiber density with structural nerve damage
These changes were linked to symptoms such as numbness and pain, and they correlated with validated clinical scores like the Small Fiber Neuropathy Symptom Inventory Questionnaire.
Blood Vessel Changes and Angiogenin Reduction
Skin biopsies have revealed thickened walls in the small dermal blood vessels of ALS patients. Electron microscopy detected “onion-skin” formations and duplications of the basement membrane. A protein called angiogenin (ANG), which supports blood vessel growth, was found at reduced levels in ALS skin, particularly in the nuclei of epidermal cells. This reduction could impair vascular health in the skin and possibly reflect broader systemic changes.
ALS-Related Protein Aggregation in Skin Cells
One of the study’s most striking findings was the abnormal aggregation of ALS-associated proteins in skin tissues and fibroblasts. These proteins included:
-
SOD1: Aggregated in fibroblasts from patients with known SOD1 mutations.
-
TDP-43: Elevated in skin tissue and fibroblasts, especially in patients with upper limb onset.
-
FUS: Mislocalized and prone to aggregation under stress, particularly in mutation carriers.
-
VCP, UBQLN2, VAPB, and PGRN: All linked to protein degradation systems and found to form aggregates or show altered expression in ALS skin.
These changes suggest that protein misfolding and impaired protein clearance occur not just in neurons but also in peripheral tissues like the skin.
Mitochondrial Dysfunction in ALS Skin
Mitochondria in skin cells of ALS patients also show signs of damage:
-
Reduced size and disrupted shape
-
Loss of outer membrane integrity and internal structures
-
Decreased ATP production
-
Increased oxidative stress
However, results varied across studies, possibly due to differences in patient samples and disease stages.
Inflammatory Responses in Skin
ALS has long been associated with inflammation in the brain and spinal cord. Similar patterns are now being observed in the skin. Specifically:
-
Reduced regulatory T lymphocytes (Tregs)
-
Increased expression of inflammatory cytokines like IL-6 and TNF-α
-
Weakened response to skin antigen tests
These findings reinforce the role of immune dysregulation in ALS and suggest that skin inflammation might serve as a peripheral indicator of disease progression.
Additional Molecular Changes
Several other proteins and molecules were found to be altered in ALS skin:
-
Increased: MMP-9, IGF-I, VEGF, HGF, cystatin C, laminin 1, and hyaluronic acid
-
Decreased: Galectin-1, which affects fibroblast activity and axonal health
MMP-9 in particular may link skin pathology to spinal cord degeneration, making it a promising candidate for further study.
The Path Ahead: Skin as a Diagnostic Window
The study concludes that skin could serve as a practical and minimally invasive medium to detect ALS-related changes early. “Tests assessing skin autonomic and sensory nerve function, skin biopsies analyzing structural changes, MMP-9 expression, and immune biomarkers such as tuberculin reactivity could serve as non-invasive tools for ALS detection and monitoring its progression,” the authors noted.
While the current data are promising, larger-scale studies are needed to validate these biomarkers across diverse ALS populations.
Funding and Disclosure
This research was supported by the National Natural Science Foundation of China and other regional funding bodies. The authors declared no conflicts of interest.
If you’re a researcher in neurodegeneration or biomarker development, these findings offer a compelling reason to further investigate the skin as a source of early diagnostic information in ALS. As research advances, skin-based diagnostics may one day become part of routine clinical practice for ALS monitoring and intervention.
The translation of the preceding English text in Chinese:
探索ALS中皮肤与大脑的连接
肌萎缩侧索硬化症(ALS)是一种进行性神经退行性疾病,会导致大脑和脊髓中的运动神经元死亡。这种神经元的丧失会引起严重的肌肉无力和最终的瘫痪。该病通常进展迅速,大多数患者在发病后三到五年内死于呼吸衰竭。
ALS 有两种形式:散发性(sALS),约占病例的90%,和家族性(fALS),占其余10%。尽管研究不断深入,ALS 在早期仍然难以诊断。目前主要依靠临床评估和肌电图进行诊断,但这通常导致长达16个月的延误。血液标志物缺乏特异性,脑脊液采集存在风险,神经影像结果也常常不具决定性。
这一诊断延迟限制了现有治疗手段(如利鲁唑、AMX0035 和托夫森)的效果,这些药物只能减缓病情进展,无法阻止其发展。因此,迫切需要早期、准确、非侵入性的生物标志物。
有趣的是,研究人员如今开始关注皮肤——一种与神经系统具有共同胚胎起源的组织——作为潜在的诊断线索来源。
为什么选择皮肤?与神经系统的共同起源
皮肤和中枢神经系统(CNS)都起源于胚胎发育过程中的神经外胚层。这种共同起源提示,皮肤中的分子和细胞过程可能反映神经系统的变化。例如,皮肤中的角质形成细胞表达与记忆和学习相关的NMDA受体,还通过下丘脑-垂体-肾上腺轴参与免疫调节。
皮肤与神经系统的紧密联系已在其他神经退行性疾病中得到研究。例如,在帕金森病中,皮肤中的α-突触核蛋白沉积已被用作在神经症状出现前进行检测的方法。
类似的皮肤变化是否可以用于更早地诊断ALS?
ALS患者皮肤的结构变化
研究审查了ALS患者皮肤的一系列异常,首先是其结构方面。在ALS受影响的皮肤中,研究人员发现:
-
胶原束减少且排列紊乱
-
真皮中沉积无定形物质
-
胶原纤维碎裂并分离
-
血管壁增厚
这些特征使皮肤触感柔软、皮革状,并有时伴随“按压后回弹延迟”现象。即便是在携带与ALS相关遗传突变的无症状患者(如C9orf72)中,组织工程皮肤模型也显示出如表皮未分化和胶原紊乱等早期异常。
神经纤维丧失与自主神经功能障碍
除结构改变外,ALS皮肤还表现为神经纤维密度减少,反映出ALS中感觉神经与自主神经系统的广泛受累。
患者常见:
-
出汗功能受损(汗腺神经纤维密度下降)
-
温度感觉变化
-
立毛神经纤维密度减少并伴随结构损伤
这些变化与麻木、疼痛等症状相关,并与“小纤维神经病变症状量表问卷”等临床评分结果相符。
血管变化与血管生成素(ANG)减少
皮肤活检发现,ALS患者真皮小血管壁增厚。电子显微镜显示出“洋葱皮样”结构及基底膜重复。一种促进血管生长的蛋白——血管生成素(ANG)在ALS患者皮肤中(尤其是表皮细胞核内)水平下降。这种减少可能损害皮肤的血管健康,也可能反映更广泛的系统性变化。
ALS相关蛋白在皮肤细胞中的聚集
研究中最令人瞩目的发现之一是在皮肤组织和成纤维细胞中发现ALS相关蛋白的异常聚集。这些蛋白包括:
-
SOD1:在携带SOD1突变的患者成纤维细胞中形成聚集
-
TDP-43:在皮肤组织和成纤维细胞中升高,尤以上肢起病的患者明显
-
FUS:在压力下易于聚集和错位,特别是在突变携带者中
-
VCP、UBQLN2、VAPB、PGRN:这些与蛋白降解系统相关,在ALS皮肤中聚集或表达异常
这些变化表明,蛋白错误折叠与清除障碍不仅发生在神经元,也存在于如皮肤等外周组织中。
ALS皮肤中的线粒体功能障碍
ALS患者皮肤细胞中的线粒体也表现出损伤迹象:
-
体积减小、形态异常
-
外膜完整性及内部结构受损
-
ATP生成减少
-
氧化应激升高
不过,各研究结果存在差异,可能与患者样本和疾病阶段不同有关。
皮肤中的炎症反应
ALS长期以来被认为与脑和脊髓中的炎症有关。现在,类似的炎症模式也在皮肤中被观察到,具体包括:
-
调节性T淋巴细胞(Tregs)减少
-
炎性细胞因子(如IL-6和TNF-α)表达升高
-
对皮肤抗原试验反应减弱
这些发现进一步支持ALS中的免疫失调作用,并暗示皮肤炎症可能成为疾病进展的外周指标。
其他分子变化
ALS皮肤中还有多种蛋白和分子发生改变:
-
升高:MMP-9、IGF-I、VEGF、HGF、胱抑素C、层粘连蛋白1、透明质酸
-
降低:半乳糖凝集素-1(Galectin-1),影响成纤维细胞活性和轴突健康
其中,MMP-9可能将皮肤病变与脊髓变性联系起来,是值得深入研究的候选生物标志物。
前景展望:皮肤作为诊断窗口
研究指出,皮肤可作为一种实际可行、微创的方法,用于早期检测ALS相关变化。作者表示:“通过评估皮肤自主与感觉神经功能、皮肤活检分析结构变化、检测MMP-9表达及免疫生物标志物(如结核菌素反应性)等方法,可作为非侵入性手段用于ALS的早期检测与病程监测。”
尽管现有数据令人鼓舞,仍需在更大范围ALS人群中验证这些标志物。
资金与声明
本研究得到了中国国家自然科学基金及其他地区性资助机构的支持。作者声明无利益冲突。
如果您是一位从事神经退行性疾病或生物标志物研究的学者,这些发现为进一步探索皮肤作为ALS早期诊断信息来源提供了有力理由。随着研究的推进,基于皮肤的诊断或许有朝一日会成为ALS常规临床检测的一部分。
Reference:
Ying Gao, Yanchao Lu, Ranran Chen, Shumin Zhao, Jialing Liu, Sutian Zhang, Xue Bai, Jingjing Zhang
Skin pathology in ALS: Diagnostic implications and biomarker potential.
Biomol Biomed [Internet]. 2025 Apr. 2 [cited 2025 Jun. 4];
Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/12100
Important information:
We invite submissions for our upcoming thematic issues, including:
- Immune Prediction and Prognostic Biomarkers in Immuno-Oncology
- Artificial Intelligence and Machine Learning in disease diagnosis and treatment target identification
- Insulin for Type 1 and Type 2 Diabetes Mellitus: Pathophysiology, Complications and Treatment
- Cell-based Therapeutics
More news: Blog
Editor: Merima Hadžić
Leave a Reply