Colorectal cancer: high incidence, stubborn mortality
According to the 2022 GLOBOCAN survey, colorectal cancer (CRC) stands fourth worldwide for new cancer cases and third for cancer-related deaths. Despite multimodal treatments—including surgery, chemotherapy and targeted agents—outcomes remain disappointing. For patients diagnosed at an advanced stage, the five-year survival rate is barely 14 %. Several intertwined factors fuel this poor prognosis: marked tumour heterogeneity, differential responses to therapy, and the steady emergence of drug resistance. These challenges have shifted research attention from cancer cells alone to the tumour micro-environment (TME)—the mix of immune, stromal and endothelial cells that can sustain growth, blunt immunity and foster resistance.
Why focus on fibroblasts?
Within the TME, cancer-associated fibroblasts (CAFs) secrete growth factors and cytokines, remodel extracellular matrix and promote metastasis. Single-cell studies further reveal that fibroblasts often dominate cell–cell communication networks in solid tumours. The study discussed here leverages that insight to ask a translational question: Can fibroblast-specific genes predict patient outcome better than current models?
Study at a glance
| Item | Details |
|---|---|
| Samples | 306 tumour-core specimens, 448 255 single cells profiled by scRNA-seq |
| Discovery | CellChat analysis highlighted fibroblasts as the principal signalling hubs in CRC tissue |
| Feature pool | 435 fibroblast marker genes (highly expressed in fibroblast clusters) |
| Machine-learning pipeline | 101 algorithm combinations evaluated via leave-one-out cross-validation (LOOCV) |
| Final signature | 7 genes – CSRP2, DBN1, FSTL3, GPX3, PAM, RGS16, CXCL14 – selected by Lasso plus stepwise Cox regression |
How well does the seven-gene signature perform?
-
Risk discrimination – In the TCGA-COAD training set (n = 351) the concordance index (C-index) reached 0.65; in the independent GSE17536 cohort (n = 177) it was 0.63.
-
Hazard separation – High-risk patients faced a 2.4-fold greater hazard of death in both datasets.
-
Time-dependent accuracy – Area-under-the-curve values hovered around 0.65-0.68 at one, three and five years.
-
Added clinical value – Combining the signature with standard variables in a nomogram lifted the overall C-index to 0.81.
What does the biology say?
CellChat and enrichment analyses converge on an immune-centred interpretation:
-
Fibroblasts emit the highest number and strength of outgoing signals across cell types, reinforcing their regulatory dominance.
-
Genes linked to the signature are enriched in cytokine–cytokine receptor interaction and chemokine signalling pathways.
-
High-risk tumours display increased macrophage and natural-killer cell infiltration but also signs of T-cell dysfunction and immune evasion.
Therapeutic signals worth exploring
Drug-response modelling revealed that low-risk patients are more sensitive to camptothecin and its clinical analogue irinotecan. Conversely, high-risk profiles correlated with greater stromal content and immune suppression—features that have been linked to reduced efficacy of checkpoint blockade. Although these observations are computational, they open the door to treatment stratification trials.
Key messages for researchers
-
Stromal genes matter – A concise fibroblast-derived panel matches or surpasses larger, tumour-cell-centric signatures.
-
Single-cell data enhance model building – Deconvolution of 448 k individual cells provided a biologically coherent feature set.
-
Integration boosts accuracy – The signature remains an independent predictor and raises prognostic performance when merged with clinical factors.
-
Therapy guidance is plausible – Differential sensitivity to topoisomerase-I inhibitors and distinct immune landscapes imply real-world utility.
Practical implications and next steps
For the laboratory, the seven-gene panel is small enough for qPCR or thermostable multiplex assays. For the clinic, incorporation into existing nomograms could refine decisions on adjuvant chemotherapy or enrolment in immunotherapy studies. The authors note that functional validation—both in vitro and in vivo—is still required to confirm causality and to test whether modulating fibroblast activity can alter drug response.
Conclusion
By centring analysis on fibroblasts, this study delivers a scientifically grounded, clinically relevant prognostic tool for colorectal cancer. It illustrates how single-cell insights can be distilled into practical, seven-gene signatures that outperform traditional metrics and illuminate new therapeutic avenues. Prospective validation and mechanism-focused experimentation will determine how quickly this fibroblast signature moves from bench to bedside.
The translation of the preceding English text in Chinese:
结直肠癌:高发病率,顽固的死亡率
根据 2022 年 GLOBOCAN 调查,结直肠癌(CRC)在全球新发癌症中位列第四,在癌症相关死亡中位列第三。尽管已经采用了外科手术、化疗和靶向治疗等多模式治疗方案,疗效仍不理想。晚期确诊患者的五年生存率仅为 14 %。造成预后不良的原因错综复杂,包括明显的肿瘤异质性、对治疗的差异性反应以及耐药性的持续出现。这些挑战将研究焦点从肿瘤细胞本身转向肿瘤微环境(TME)——由免疫细胞、基质细胞和内皮细胞组成的复杂生态,可支持肿瘤生长、削弱免疫反应并助长耐药。
为什么聚焦成纤维细胞?
在 TME 中,癌相关成纤维细胞(CAFs)分泌生长因子和细胞因子,重塑细胞外基质并促进转移。单细胞研究进一步显示,在实体瘤中,成纤维细胞往往主导细胞‑细胞通讯网络。本文所述研究利用这一洞见提出一个转化医学问题:相比现有模型,成纤维细胞特异基因能否更好地预测患者预后?
研究概览
-
样本:306 个肿瘤核心样本,scRNA‑seq 共分析 448 255 个单细胞
-
主要发现:CellChat 分析显示,成纤维细胞是 CRC 组织中的主要信号枢纽
-
候选特征:435 个成纤维细胞标志基因(在成纤维细胞簇中高表达)
-
机器学习流程:采用留一交叉验证(LOOCV)评估 101 种算法组合
-
最终特征签名:7 个基因——CSRP2、DBN1、FSTL3、GPX3、PAM、RGS16、CXCL14——经 Lasso 和逐步 Cox 回归筛选而得
七基因签名的表现如何?
-
风险判别:在 TCGA‑COAD 训练集(n = 351)中,C‑index 为 0.65;在独立 GSE17536 队列(n = 177)中为 0.63。
-
危险度分离:高风险患者在两组队列中的死亡风险均提高 2.4 倍。
-
时间依赖准确度:一、三、五年 AUC 稳定在 0.65–0.68 之间。
-
临床增益:将该签名与标准临床变量整合为列线图后,整体 C‑index 提升至 0.81。
生物学意义何在?
CellChat 及富集分析共同指向免疫中心化解释:
-
成纤维细胞在各类细胞中发出的信号数量与强度最高,凸显其调控主导地位。
-
签名基因富集于细胞因子‑受体相互作用和趋化因子信号通路。
-
高风险肿瘤显示巨噬细胞和自然杀伤细胞浸润增加,但同时伴随 T 细胞功能障碍和免疫逃逸迹象。
值得探索的治疗线索
药物反应建模表明,低风险患者对喜树碱及其临床类似物伊立替康更敏感;而高风险特征与基质含量升高和免疫抑制相关——这些特点与免疫检查点抑制疗效下降有关。尽管当前结论基于计算预测,但为治疗分层试验提供了思路。
研究者需关注的要点
-
基质基因的重要性:简洁的成纤维细胞基因面板可媲美甚至超越体细胞‑中心化的大型签名。
-
单细胞数据助力模型构建:对 448 k 个单细胞的去卷积提供了生物学一致的特征集。
-
整合提升准确度:该签名是独立预后因子,与临床指标合用可进一步提高预测性能。
-
疗法指导的可行性:对拓扑异构酶 I 抑制剂的差异敏感性及独特免疫景观显示了潜在的临床应用价值。
实际意义与后续步骤
对实验室而言,七基因面板体量小,适合 qPCR 或热稳定多重检测;对临床而言,纳入现有列线图可优化辅助化疗或免疫治疗入组决策。作者指出,仍需体内外功能验证以确认因果关系,并检验调控成纤维细胞活性是否能改变药物反应。
结论
通过聚焦成纤维细胞,本研究提供了一个科学扎实、临床相关的结直肠癌预后工具。它展示了如何将单细胞洞见浓缩为实用的七基因签名,优于传统指标并揭示新的治疗途径。前瞻性验证和机制研究将决定该成纤维细胞签名从实验室走向临床的速度。
Reference:
Ning Zhang, Ruiyan Liu, Siya Wu, Chenxi Feng, Boxiang Wang, Qiaoqiao Zheng, Linru Jie, Ruihua Kang, Xiaoli Guo, Xiaoyang Wang, Shaokai Zhang, Jiangong Zhang
Machine learning integration of single-cell and bulk transcriptomics identifies fibroblast-driven prognostic markers in colorectal cancer. Biomol Biomed [Internet]. 2025 Apr. 22 [cited 2025 Jul. 18];
Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/12038
Additional information:
We invite submissions for our upcoming thematic issues, including:
- Immune Prediction and Prognostic Biomarkers in Immuno-Oncology
- Artificial Intelligence and Machine Learning in disease diagnosis and treatment target identification
More news: Blog
Editor: Merima Hadžić
Leave a Reply