Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies

Examples of mutations of the DMD gene
Examples of mutations of the DMD gene and their consequences on the production of dystrophin and the corresponding phenotypes. The boxes represent exons. Right faces of boxes indicate that the exon codes for an entire protein sequence based on 3-bases codons (examples: exons 47, 48, 49). Curved faces indicate that the exon does not code for an entire protein sequence but that either the first or the last bases need the preceding or following exon to code a full 3-bases codon (examples: exons 50, 51, 52). BMD for Becker muscular dystrophy; DMD for Duchenne muscular dystrophy.

Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable diseases, Duchenne (DMD) and Becker (BMD) muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.

This article was published as:

Elisabeth Le Rumeur. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci. 2015 Aug; 15(3): 14–20. doi: 10.17305/bjbms.2015.636

Be the first to comment

Leave a Reply