Anti-Müllerian Hormone’s Role in PCOS: A New Target for Treatment

Anti-Müllerian Hormone’s Role in PCOS: A New Target for Treatment

Understanding PCOS: A Complex Hormonal Disorder

Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects millions of women of reproductive age. Characterized by hyperandrogenism, irregular ovulation, and polycystic ovarian morphology (PCOM), PCOS has multifactorial roots. Genetics, neuroendocrine imbalances, ovarian dysfunction, and metabolic factors all contribute to its development.

One of the central mechanisms driving PCOS is gonadotropin dysregulation. An increased pulse frequency of gonadotropin-releasing hormone (GnRH) leads to a disproportionately high secretion of luteinizing hormone (LH) over follicle-stimulating hormone (FSH). This hormonal imbalance stimulates theca cells to produce androgens excessively, worsening hyperandrogenism.

Insulin resistance (IR) is another key contributor. Elevated insulin levels act synergistically with LH to promote androgen synthesis and reduce sex hormone-binding globulin (SHBG) levels, increasing circulating androgens. IR is also linked to obesity, dyslipidemia, and impaired glucose tolerance, compounding the reproductive and metabolic dysfunctions in PCOS.

AMH in Focus: More Than a Marker

Among the hormonal disruptions in PCOS, anti-Müllerian hormone (AMH) stands out as a potential linchpin. A glycoprotein from the transforming growth factor-beta (TGF-β) family, AMH is secreted by granulosa cells in pre-antral and small antral follicles.

In individuals with PCOS, AMH levels are two to three times higher than in healthy controls. Elevated AMH reduces ovarian follicles’ sensitivity to FSH, contributing to follicular arrest and anovulation. It also enhances GnRH neuron activity, which increases LH secretion, further entrenching hormonal imbalance. High AMH also inhibits aromatase activity, leading to androgen accumulation.

Though primarily studied in the ovarian context, emerging evidence suggests AMH may also impact metabolic processes, including insulin sensitivity and lipid metabolism. However, this review focuses specifically on AMH’s regulatory mechanisms and therapeutic potential in PCOS.

What Drives AMH Overexpression in PCOS?

The study breaks down the regulation of AMH expression into three main levels: transcriptional, post-transcriptional, and post-translational. The complexity of this control suggests multiple potential targets for therapy.

Transcriptional Regulation

Several transcription factors interact at the AMH gene promoter:

  • GATA4, which plays a pivotal role in gonadal development, especially during male embryogenesis.

  • Steroidogenic factor 1 (SF1) and FOXL2, which cooperatively activate AMH expression in granulosa cells.

  • Wilms tumor 1 (WT1), which also modulates AMH and its receptor (AMHR2).

Notably, the human AMH promoter contains CpG islands, which are targets for DNA methylation. The review cites studies linking altered methylation of AMH in PCOS patients to disrupted gene expression, underlining a potential epigenetic layer to the condition.

Post-Transcriptional Regulation: The Role of Non-Coding RNAs

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) fine-tune AMH levels after transcription:

  • miR-200 family, miR-140-3p, and miR-155 have been shown to target AMH mRNA, reducing its translation or promoting degradation.

  • The lncRNA H19 regulates AMH by sequestering Let-7 miRNA, which otherwise suppresses AMH expression. Reduced H19 levels, seen in women with diminished ovarian reserve, correlate with lower AMH.

These findings point to a layered network of regulation, where non-coding RNAs contribute to the pathogenesis of PCOS by maintaining or suppressing AMH.

Post-Translational Modifications: Activating the AMH Protein

For AMH to become biologically active, it must undergo specific modifications:

  • Proteolytic cleavage by enzymes like furin.

  • Glycosylation, ensuring protein stability and secretion.

  • Dimerization, necessary for receptor binding.

  • Interaction with the prodomain, which regulates AMH’s activity timing.

Disruptions at this level can render AMH inactive despite normal gene expression—highlighting additional checkpoints in its biological role.

AMH Signaling: The SMAD Pathway and Beyond

Once activated, AMH binds to its receptor, AMHR2, and initiates a SMAD1/5/8 signaling cascade. These SMAD proteins enter the nucleus and influence genes involved in follicle development and granulosa cell differentiation.

In PCOS, excessive AMH leads to overactivation of SMAD signaling, further inhibiting follicular recruitment and FSH sensitivity. This causes the accumulation of small antral follicles—a hallmark of PCOS.

Hormonal Interplay: AMH, FSH, and Androgens

The balance between AMH and FSH governs healthy folliculogenesis. AMH reduces granulosa cells’ sensitivity to FSH, controlling how many follicles mature each cycle. In PCOS, elevated AMH tips this balance, stalling follicle development.

Androgens also feed into this loop. Granulosa cells have androgen receptors, and exposure to dihydrotestosterone (DHT) increases AMH expression. In PCOS, hyperandrogenism thus intensifies AMH overproduction and worsens ovulatory dysfunction.

Therapeutic Potential: Targeting the AMH Pathway

Several therapeutic avenues are under exploration:

  • AMHR2 antagonists, including monoclonal antibodies like murlentamab and GM102, aim to block AMH signaling at the receptor level.

  • GnRH antagonists, such as cetrorelix and ganirelix, reduce LH and androgen production, indirectly lowering AMH levels.

  • Aromatase inhibitors (e.g., letrozole) increase FSH levels by decreasing estrogen feedback, helping counteract AMH’s effects.

  • Anti-androgens (e.g., spironolactone, flutamide) reduce AMH stimulation by lowering androgen levels.

These approaches show promise in restoring normal folliculogenesis and improving fertility in PCOS patients.

Toward Personalized Therapies

PCOS is a heterogeneous disorder, with different phenotypes showing variable AMH levels. Targeted therapies may be most effective in patients with elevated AMH and severe anovulation. The authors advocate for a personalized medicine approach, where hormonal profiles guide treatment selection.

Final Thoughts

This review underscores AMH’s central role in PCOS—not only as a diagnostic biomarker but also as a functional driver of disease. By unraveling the regulatory mechanisms behind AMH expression and signaling, researchers are identifying novel therapeutic targets that may one day lead to more effective, individualized treatment options for women with PCOS.

 

The translation of the preceding English text in Chinese:

 

了解多囊卵巢综合征(PCOS):一种复杂的激素紊乱疾病

多囊卵巢综合征(PCOS)是一种常见的内分泌疾病,影响着全球数百万育龄女性。其特征包括高雄激素血症、排卵不规律以及多囊卵巢形态(PCOM)。PCOS的成因是多因素的,包括遗传、神经内分泌失衡、卵巢功能障碍和代谢异常。

驱动PCOS的核心机制之一是促性腺激素的调控失衡。促性腺激素释放激素(GnRH)脉冲频率增加,导致黄体生成素(LH)分泌高于促卵泡激素(FSH)。这种激素失衡刺激卵巢间质细胞(theca cells)过度产生雄激素,进一步加重高雄激素血症。

胰岛素抵抗(IR)也是关键因素。胰岛素水平升高与LH协同促进雄激素合成,同时降低性激素结合球蛋白(SHBG)水平,增加循环中的游离雄激素。IR还与肥胖、血脂异常及葡萄糖耐量受损相关,使PCOS的生殖和代谢异常进一步恶化。

聚焦抗缪勒氏管激素(AMH):不仅是一个标志物

在PCOS的激素紊乱中,抗缪勒氏管激素(AMH)被认为是一个关键因素。AMH属于转化生长因子β(TGF-β)家族的糖蛋白,由卵泡中的颗粒细胞分泌,尤其是在前窦卵泡和小窦卵泡阶段。

PCOS患者的AMH水平通常为正常女性的两到三倍。AMH升高会降低卵泡对FSH的敏感性,导致卵泡发育停滞和无排卵。此外,AMH还增强GnRH神经元的活性,进而增加LH分泌,加剧激素失衡。AMH的升高还会抑制芳香化酶的活性,导致雄激素堆积。

尽管AMH主要在卵巢环境中被研究,越来越多的证据表明其可能也参与代谢过程,如胰岛素敏感性和脂质代谢。然而,本综述聚焦于AMH在PCOS中的调控机制及其治疗潜力。

是什么驱动PCOS中AMH的过表达?

该综述将AMH表达的调控划分为三个层面:转录水平、转录后水平以及翻译后水平。调控的复杂性意味着存在多个潜在治疗靶点。

转录调控

多个转录因子参与AMH基因启动子的调控:

  • GATA4:在性腺发育中起关键作用,尤其在男性胚胎时期;

  • 类固醇生成因子1(SF1)与FOXL2:协同激活颗粒细胞中的AMH表达;

  • Wilms瘤1(WT1):也调控AMH及其受体(AMHR2)。

值得注意的是,人类AMH启动子区域含有CpG岛,是DNA甲基化的靶点。综述引用的研究指出,PCOS患者中AMH甲基化异常会影响其表达,提示疾病存在潜在的表观遗传层面。

转录后调控:非编码RNA的作用

微小RNA(miRNA)和长链非编码RNA(lncRNA)在转录后调控AMH表达方面发挥精细作用:

  • miR-200家族、miR-140-3p和miR-155可靶向AMH mRNA,抑制其翻译或促进其降解;

  • lncRNA H19通过吸附Let-7 miRNA间接提高AMH表达。卵巢储备减少女性中H19水平下降,与AMH水平降低相关。

这些发现表明,非编码RNA通过调控AMH表达参与PCOS的发病机制。

翻译后修饰:AMH蛋白的激活过程

AMH要具备生物活性,需经历特定修饰步骤:

  • 蛋白酶(如furin)介导的蛋白切割;

  • 糖基化,确保蛋白稳定性及分泌;

  • 二聚化,是其结合受体所必需;

  • 与前体结构域(prodomain)的相互作用,调控其活性时间。

如果这些环节受损,即使AMH基因表达正常,也可能导致其功能失活,强调了AMH调控的多层次性。

AMH信号通路:SMAD通路及其延伸

AMH激活后会与其受体AMHR2结合,激活SMAD1/5/8信号通路。这些SMAD蛋白进入细胞核,调控参与卵泡发育和颗粒细胞分化的基因。

在PCOS中,AMH过度表达会导致SMAD通路的过激活,进一步抑制卵泡募集及对FSH的响应,导致小窦卵泡积聚,这是PCOS的典型特征。

激素互作:AMH、FSH与雄激素

AMH与FSH之间的平衡决定卵泡的正常发育。AMH通过抑制颗粒细胞对FSH的敏感性,控制每周期成熟的卵泡数量。在PCOS中,AMH升高破坏这一平衡,使卵泡发育受阻。

雄激素也会加强这一反馈环。颗粒细胞表达雄激素受体,接触二氢睾酮(DHT)可进一步增强AMH表达。在PCOS中,高雄激素状态加剧AMH过表达,使排卵功能进一步受损。

治疗前景:靶向AMH通路

若干治疗策略正在探索中:

  • AMHR2拮抗剂(如murlentamab、GM102):阻断AMH与其受体结合;

  • GnRH拮抗剂(如西曲瑞克、加尼瑞克):抑制LH与雄激素产生,间接降低AMH;

  • 芳香化酶抑制剂(如来曲唑):减少雌激素负反馈,提高FSH水平,对抗AMH效应;

  • 抗雄激素药物(如螺内酯、氟他胺):降低雄激素水平,间接减少AMH刺激。

这些策略在恢复卵泡发育、改善生育力方面显示出希望。

迈向个体化治疗

PCOS是一种异质性疾病,不同表型患者的AMH水平差异显著。靶向治疗可能对AMH水平升高和无排卵严重者最有效。作者呼吁采用精准医疗方法,基于激素谱定制治疗方案。

结语

本综述强调了AMH在PCOS中的核心作用——不仅是诊断标志物,更是疾病发生机制的重要驱动因子。通过深入解析AMH表达及信号通路的调控机制,研究者正在发现新的治疗靶点,未来有望实现更有效、个体化的PCOS治疗方案。


Reference:

Yunmei Ke, Dan Tang, Qin Yang, Han Zhao, Jinyan Zheng, Caifen Zhu

Anti-Müllerian hormone in PCOS: Molecular regulation and emerging therapeutic strategies.

Biomol Biomed [Internet]. 2025 Apr. 15 [cited 2025 Jun. 19];

Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/12070


Important information:

We invite submissions for our upcoming thematic issues, including:

More news: Blog

Editor: Merima Hadžić

Be the first to comment

Leave a Reply